matrix calculus

Transpose Rules

  • \(\qty(AB)^{T} = B^{T}A^{T}\)
  • \(\qty(a^{T}Bc)^{T} = c^{T} B^{T}a\)
  • \(a^{T}b = b^{T}a\)
  • \(\qty(A+B)C = AC + BC\)
  • \(\qty(a+b)^{T}C = a^{T}C + b^{T}C\)
  • \(AB \neq BA\)

Derivative

Scalar derivativeVector derivative
\(f\qty(x) \to \pdv{f}{x}\)\(f\qty(x) \to \pdv{f}{x}\)
\(bx \to b\)\(x^{T}B \to B\)
\(bx \to b\)\(x^{T}b \to b\)
\(x^{2} \to 2x\)\(x^{T}x \to 2x\)
\(bx^{2} \to 2bx\)\(x^{T}Bx \to 2Bx\)

Products

\begin{equation} \pdv{AB}{A} = B^{T}, \pdv{AB}{B} = A^{T} \end{equation}

\begin{equation} \pdv{Ax}{A} = x^{T}, \pdv{Ax}{x}= A \end{equation}

Vector and Quadratic Forms

\begin{equation} \pdv{y^{T} x}{x} = y, \pdv{y^{T} x}{y} = x \end{equation}

\begin{equation} \pdv{x^{T}Ax}{x} = \qty(A+A^{T})x = 2Ax \end{equation}

for symmetric A

Chain Rule for Matrix Multiplication

Suppose:

\begin{equation} z = Wu + b \end{equation}

\begin{equation} J = J\qty(z) \end{equation}

then: \(\pdv{J}{W} = \pdv{J}{z} u^{T}\).

Rest of them