Houjun Liu

One-Shot Deformation

We have an expression:

\begin{equation} B = \frac{FL^{3}}{3EI} = \frac{N m^{3}}{3 p m^{4}} = \frac{Nm^{3}}{\frac{N}{m^{2}}m^{4}} = m \end{equation}

With constants:

  • \(B\): \(m\), deflection at the point of force application
  • \(F\): \(N\), force applied
  • \(L\): \(m\), distance between fixed point and point of force application
  • \(E\): \(p=\frac{N}{m^{2}}\), elastic modulus
  • \(I\): \(m^{4}\), second moment of area

As per measured:

  • \(B\): \(9.15 \cdot 10^{-4} m\)
  • \(F\): \(20N\)
  • \(L\): \(9.373 \cdot 10^{-2} m\)
  • \(I\): \(1.37 \cdot 10^{-10} m^{4}\) = \(\frac{WH^{3}}{12}\) = \(\frac{(6.25 \cdot 10^{-3})(6.4 \cdot 10^{-3})^{3}}{12}\)

Theoretical:

  • \(E\): \(7 \cdot 10^{10} P\)

As calculated:

  • \(B\): \(5.74 \cdot 10^{-4} m\)