Houjun Liu

SU-CS254B MAY142025

Part 1

  • Relativization Barrier to P vs. NP: \(\exists\) oracles \(A\) such that \(P^{A} = NP^{A}\),
  • Space and Time: \(\text{TIME}\qty(t) \subseteq \text{SPACE}\qty(\frac{t\qty(n)}{\log \qty(t\qty(n))} )\)
    • pebbling game (constant degree digraph, can only place if pebble adjacent): can be pebbled with \(\leq O\qty( \frac{v}{\log v})\) pebbles
  • Time Space Constraints:
    • \(\text{SAT} \not \in \text{TISP}\qty(n^{1.8}, n^{o\qty(1)})\), no one machine can do both
  • Ladner’s Theorem: assuming P != NP, there are NP-intermediate languages

Part 2

Hardness vs. Randomness

If SAT requires \(2^{\Omega\qty(n)}\) circuits, then \(\text{P} = \text{BPP}\).

hardness amplification:

  • worts-case hardness => average case hardness

Frontier

  • beyond worst-case analysis
  • hardness within P
  • undirected STCONN and expanded graphs

Beyond Worst-Case

Beyond Worst-Case Analysis