A primer on Vector Calculus.
trace
constituents
for square \(A \in \mathbb{R}^{m\times m}\), we write:
requirements
\(\text{tr}\qty(A) = \sum_{i}^{} A_{ii}\) is the sum of the diagonals
additional information
properties of traces
\begin{equation} \text{tr}\qty(AB) = \text{tr}\qty(BA) \end{equation}
\begin{equation} \text{tr}\qty(ABC) = \text{tr}\qty(CAB) \end{equation}
\begin{equation} \nabla_{A} \qty [\text{tr}\qty(AB)] = B^{T} \end{equation}