null space
Last edited: August 8, 2025The Null Space, also known as the kernel, is the subset of vectors which get mapped to \(0\) by some Linear Map.
constituents
Some linear map \(T \in \mathcal{L}(V,W)\)
requirements
The subset of \(V\) which \(T\) maps to \(0\) is called the “Null Space”:
\begin{equation} null\ T = \{v \in V: Tv = 0\} \end{equation}
additional information
the null space is a subspace of the domain
It should probably not be a surprise, given a Null Space is called a Null Space, that the Null Space is a subspace of the domain.
number
Last edited: August 8, 2025A number can be any of…
- \(\mathbb{N}\): natural number
- \(\mathbb{Z}\): integer
- \(\mathbb{Q}\): rational number
- \(\mathbb{R}\): real number
- \(\mathbb{P}\): irrational number
- \(\mathbb{C}\): complex number
Numerical Approximation Schemes
Last edited: August 8, 2025Consider a general non-linear First Order ODEs:
\begin{equation} x’ = F(x) \end{equation}
Suppose we have some time interval, we have some solutions to the expression given. Is it possible for us to, given \(x(t_0) = x_0\), what \(x(t_0+T)\) would be? Can we approximate for explicit numbers?
The solutions have to exist for all time: blow-up cannot be present during numerical estimations.
Explicit Euler Method
\begin{equation} x(t+h) \approx x_{t+1} = x_{t} + h f(x_t) \end{equation}
Numerical Cantilever Simulations
Last edited: August 8, 2025Here’s the characteristic equation again:
\begin{equation} \pdv[2] x \qty(EI \pdv[2]{w}{x}) = -\mu \pdv{w}{t}+q(x) \end{equation}
After Fourier decomposition, we have that:
\begin{equation} EI \dv[4]{\hat{w}}{x} - \mu f^{2}\hat{w} = 0 \end{equation}
Let’s solve this!
E,I,u,f = var("E I u f")
x, L = var("x L")
w = function('w')(x)
_c0, _c1, _c2, _c3 = var("_C0 _C1 _C2 _C3")
fourier_cantileaver = (E*I*diff(w, x, 2) - u*f^2*w == 0)
fourier_cantileaver
-f^2*u*w(x) + E*I*diff(w(x), x, x) == 0
And now, we can go about solving this result.
solution = desolve(fourier_cantileaver, w, ivar=x, algorithm="fricas").expand()
w = solution
\begin{equation} _{C_{1}} e^{\left(\sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{0}} e^{\left(i \, \sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{2}} e^{\left(-i \, \sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{3}} e^{\left(-\sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} \end{equation}
Numerical Cantilever Simulations
Last edited: August 8, 2025Here’s the characteristic equation again:
\begin{equation} \pdv[2] x \qty(EI \pdv[2]{w}{x}) = -\mu \pdv{w}{t}+q(x) \end{equation}
After Fourier decomposition, we have that:
\begin{equation} EI \dv[4]{\hat{w}}{x} - \mu f^{2}\hat{w} = 0 \end{equation}
Let’s solve this!
E,I,u,f = var("E I u f")
x, L = var("x L")
w = function('w')(x)
_c0, _c1, _c2, _c3 = var("_C0 _C1 _C2 _C3")
fourier_cantileaver = (E*I*diff(w, x, 2) - u*f^2*w == 0)
fourier_cantileaver
-f^2*u*w(x) + E*I*diff(w(x), x, x) == 0
And now, we can go about solving this result.
solution = desolve(fourier_cantileaver, w, ivar=x, algorithm="fricas").expand()
w = solution
\begin{equation} _{C_{1}} e^{\left(\sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{0}} e^{\left(i \, \sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{2}} e^{\left(-i \, \sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{3}} e^{\left(-\sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} \end{equation}
