_index.org

null space

Last edited: August 8, 2025

The Null Space, also known as the kernel, is the subset of vectors which get mapped to \(0\) by some Linear Map.

constituents

Some linear map \(T \in \mathcal{L}(V,W)\)

requirements

The subset of \(V\) which \(T\) maps to \(0\) is called the “Null Space”:

\begin{equation} null\ T = \{v \in V: Tv = 0\} \end{equation}

additional information

the null space is a subspace of the domain

It should probably not be a surprise, given a Null Space is called a Null Space, that the Null Space is a subspace of the domain.

number

Last edited: August 8, 2025

A number can be any of…

Numerical Approximation Schemes

Last edited: August 8, 2025

Consider a general non-linear First Order ODEs:

\begin{equation} x’ = F(x) \end{equation}

Suppose we have some time interval, we have some solutions to the expression given. Is it possible for us to, given \(x(t_0) = x_0\), what \(x(t_0+T)\) would be? Can we approximate for explicit numbers?

The solutions have to exist for all time: blow-up cannot be present during numerical estimations.

Explicit Euler Method

\begin{equation} x(t+h) \approx x_{t+1} = x_{t} + h f(x_t) \end{equation}

Numerical Cantilever Simulations

Last edited: August 8, 2025

Here’s the characteristic equation again:

\begin{equation} \pdv[2] x \qty(EI \pdv[2]{w}{x}) = -\mu \pdv{w}{t}+q(x) \end{equation}

After Fourier decomposition, we have that:

\begin{equation} EI \dv[4]{\hat{w}}{x} - \mu f^{2}\hat{w} = 0 \end{equation}

Let’s solve this!

E,I,u,f = var("E I u f")
x, L = var("x L")
w = function('w')(x)
_c0, _c1, _c2, _c3 = var("_C0 _C1 _C2 _C3")
fourier_cantileaver = (E*I*diff(w, x, 2) - u*f^2*w == 0)
fourier_cantileaver
-f^2*u*w(x) + E*I*diff(w(x), x, x) == 0

And now, we can go about solving this result.

solution = desolve(fourier_cantileaver, w, ivar=x, algorithm="fricas").expand()
w = solution

\begin{equation} _{C_{1}} e^{\left(\sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{0}} e^{\left(i \, \sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{2}} e^{\left(-i \, \sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{3}} e^{\left(-\sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} \end{equation}

Numerical Cantilever Simulations

Last edited: August 8, 2025

Here’s the characteristic equation again:

\begin{equation} \pdv[2] x \qty(EI \pdv[2]{w}{x}) = -\mu \pdv{w}{t}+q(x) \end{equation}

After Fourier decomposition, we have that:

\begin{equation} EI \dv[4]{\hat{w}}{x} - \mu f^{2}\hat{w} = 0 \end{equation}

Let’s solve this!

E,I,u,f = var("E I u f")
x, L = var("x L")
w = function('w')(x)
_c0, _c1, _c2, _c3 = var("_C0 _C1 _C2 _C3")
fourier_cantileaver = (E*I*diff(w, x, 2) - u*f^2*w == 0)
fourier_cantileaver
-f^2*u*w(x) + E*I*diff(w(x), x, x) == 0

And now, we can go about solving this result.

solution = desolve(fourier_cantileaver, w, ivar=x, algorithm="fricas").expand()
w = solution

\begin{equation} _{C_{1}} e^{\left(\sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{0}} e^{\left(i \, \sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{2}} e^{\left(-i \, \sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} + _{C_{3}} e^{\left(-\sqrt{f} x \left(\frac{u}{E I}\right)^{\frac{1}{4}}\right)} \end{equation}