NUS-MATH570 Problem Set 1
Last edited: August 8, 2025We have:
\begin{equation} \frac{2y^{2}}{9-x^{2}} + y \dv{y}{x} + \frac{3y}{2-x} = 0 \end{equation}
We want to get rid of things; let’s begin by dividing the whole thing by \(y\).
\begin{equation} \frac{2y}{9-x^{2}} + \dv{y}{x} + \frac{3}{2-x} = 0 \end{equation}
Finally, then, moving the right expression to the right, we have:
\begin{equation} \frac{2y}{9-x^{2}} + \dv{y}{x} = \frac{-3}{2-x} \end{equation}
In this case, we have functions:
\begin{equation} \begin{cases} P(x) = \frac{2}{9-x^{2}}\\ Q(x) = \frac{-3}{2-x}\\ \end{cases} \end{equation}
NUS-MATH570 Problem Set 2, Problem 1
Last edited: August 8, 2025Considering the system:
\begin{equation} \begin{cases} \dv{x}{t} = -2x+y+(1-\sigma)z \\ \dv{y}{t} = 3x-y \\ \dv{z}{t} = (3-\sigma y)x-z\\ \end{cases} \end{equation}
with the initial locations \((x_0, y_0, z_0)= (-1,1,2)\).
We notice first that the top and bottom expressions as a factor in \(x\) multiplied by \(y\), which means that our system is not homogenous. Let’s expand all the expressions first.
\begin{equation} \begin{cases} \dv{x}{t} = -2x+y+(1-\sigma)z \\ \dv{y}{t} = 3x-y \\ \dv{z}{t} = 3x-\sigma yx-z\\ \end{cases} \end{equation}
NUS-MATH570 Research Question 1
Last edited: August 8, 2025Intersects:
\begin{equation} f(x) = (x+c)^{2} \end{equation}
\begin{equation} h(x) = c x \end{equation}
Doesn’t Intersect:
\begin{equation} g(x) = c e^{\frac{x^{4}}{4}}} \end{equation}
\begin{align} &h_1(x)-h_2(x) = c_1x-c_2x \\ \Rightarrow\ & 0 = c_1x-c_2x \\ \Rightarrow\ & 0 = x(c_1-c_2) \end{align}
\begin{align} &g_1(x)-g_2(x) = c_1e^{\frac{x^{4}}{4}} - c_2e^{\frac{x^{4}}{4}} \\ \Rightarrow\ & 0 = \qty(c_1 - c_2)e^{\frac{x^{4}}{4}} \\ \Rightarrow\ & 0 = e^{\frac{x^{4}}{4}}(c_1-c_2) \end{align}
\begin{align} & f_1(x)-f_2(x)=(x+c_1)^{2}-(x+c_2)^{2} \\ \Rightarrow\ & 0 = (x+c_1)^{2}-(x+c_2)^{2} \\ \Rightarrow\ & 0 = 2x(c_1-c_2)+{c_1}^{2}+{c_2}^{2} \end{align}
NUS-MATH570 Supply Demand
Last edited: August 8, 2025We are given a set of expressions:
\begin{equation} \begin{cases} \dv{x}{t} = \frac{x}{w}\\ \dv{y}{t} = \frac{xz}{w} \\ \dv{z}{t} = \beta y \\ \dv{w}{t} = \beta y \end{cases} \end{equation}
We are asked to analyze the solutions to this system, its periodicity, etc.
Stability Analysis
The immediate thing to do is to shove all of this into a Jacobian matrix—not for linearnalization, but to check how the slope changes. We will take the eigenvalues of the matrix at the critical points of the function, which will tell us whether or not the functions converge or diverge from those points.
NUS-MUS150 Critical Listening
Last edited: August 8, 2025- Instruments
- Effects
- Feeling
- Dynamics
- Process/Production
