Posts

SU-CS254 MAR052025

Last edited: August 8, 2025

Review! Probability

Let \(A_1 …, A_{M}\) be independent events, each with probability \(p\). Let \(T = \sum_{i=1}^{n} A_{i}\), meaning \(T \sim \text{Bin}\qty(n,p)\). \(\mu = \mathbb{E}\qty[T] = np\).

Two facts:

Markov bound

\(P\qty [X \geq k \mathbb{E}[x]] \leq \frac{1}{k}\)

;

Chebyshev’s inequality

\begin{equation} P\qty [T \not \in\mu \pm k \sigma] \leq \frac{1}{k^{2}} \end{equation}

Pairwise Independence

\begin{equation} H = \qty {h: \qty {0,1}^{h} \to \qty {0,1}^{k}} \end{equation}

properties of pairwise independence:

SU-CS254B APR072025

Last edited: August 8, 2025

Recall the relationship between time and space; in particular:

\begin{equation} \text{TIME}\qty(t\qty(n)) \subseteq \text{SPACE}\qty(t\qty(n)) \end{equation}

“space is more valuable than time.”

On time vs. space

\begin{equation} \text{TIME}\qty(\qty(n)) \subseteq \text{SPACE} \qty( \frac{t\qty(n)}{\log \qty(t\qty(n))}) \end{equation}

\begin{equation} \text{TIME}\qty(\qty(n)) \subseteq \text{SPACE}\qty(t\qty(n)) \end{equation}

that is: space is strictly more valuable than time. Oh, and also:

\begin{equation} \text{TIME}\qty(t\qty(n)) \subseteq \text{SPACE}\qty(\sqrt{t\qty(n) \log t\qty(n)}) \end{equation}

Key idea: let’s transform the previous thing into a graph problem!


Suppose \(M\) is the time \(T\) truing machine, and consider its configure at time \(t < T\). Key idea: we can tradeoff time for space! notably, we will solve the same problem using a different algorithm, not modify the original machine.

SU-CS254B APR092025

Last edited: August 8, 2025

SU-CS254B APR142025

Last edited: August 8, 2025

Some motivations

  • time and space are usually considered as independent resources
  • but now… consider them as joint (dependent) resources!

question!: what are simultaneous time and space efficient systems? Our interest: time space trade-offs.

Time-Space Tradeoffs

Consider the case that a single TM does something time and space efficiently.

\begin{equation} \text{TISP}\qty(t\qty(n), s \qty(n)) = \qty {L: \exists \text{TM that decides $L$ in time $O(t(n))$, and space $O\qty(s \qty(n))$}} \end{equation}

Some theorems

No algorithm that solves SAT in \(O\qty(n)\) time and \(O\qty(\log n)\) space simultaneously. That is, \(\text{SAT} \not \in \text{TISP}\qty(n, \log n)\).