_index.org

Complementary Slackness

Last edited: February 2, 2026

Consider:

\begin{align} f_{0}\qty(x^{*}) &= \text{inf}_{x} \qty(f_{0}\qty(x) + \sum_{i=1}^{m} \lambda_{i}f_{i}\qty(x) + \sum_{i=1}^{p} v_{i}h_{i}\qty(x)) \\ &\leq f_{0}\qty(x) + \dots \\ &\leq f_{0}\qty(x) \end{align}

So the inequality holds strictly

conjugate function

Last edited: February 2, 2026

The conjugate of a function \(f\) is \(f^{*}\qty(y) = \text{sup}_{x \in \text{dom }f} \qty(y^{T}x - f\qty(x))\). \(f^{*}\) is convex, even if \(f\) is not.

(fyi \(\text{sup}_{x} = \max_{x}\))

convex function

Last edited: February 2, 2026

a function for which, given any two points, the function between those points sits at (lines are convex!) or below the plane given those points

constituents

For \(f: \mathbb{R}^{n} \to \mathbb{R}\)

requirements

\begin{equation} f\qty(\theta x + \qty(1-\theta) y) \leq \theta f\qty(x) + \qty(1-\theta) f\qty(y) \end{equation}

strictly convex is the strict inequality

additional information

log conditions

  • \(f\) is log-linear IFF log \(f\) is affine
  • \(f\) is log-concave iff log \(f\) is concave
  • \(f\) is log-convex IFF log \(f\) is convex

check if something is a convex function

some convex functions

  • affine: \(ax + b\)
  • exponential: \(e^{ax}\)
  • powers on \(R_{++}\): \(x^{\alpha}\) for \(\alpha \geq 1\) or \(\alpha \leq 0\)
  • \(|x|^{p}\) for \(p \geq 1\)
  • relu
  • any norm
  • sum of squares: \(\qty {x}^{2}_{2} = x_1^{2} + … + x_{n}^{2}\)
  • max function: \(\max \qty(x) = \max \qty {x_1 \dots x_{n}}\)
  • softmax: \(\log \qty(\exp x_1 + \dots + \exp x_{n})\)
  • general affine function: \(f\qty(X) = tr\qty(A^{T} X) + b\) (“an inner product”)
  • spectral norm: \(f\qty(X) = \norm{X}_{2} = \sigma_{\max}\qty(X)\) (the maximum singular value of \(X\)
  • logsumexp: \(f\qty(x) = \log \sum_{k=1}^{n} \exp x_{k}\)
  • quadratic over linear: \(f\qty(x,y) = \frac{x^{2}}{y}, y >0\)
  • quadratic: \(f\qty(x) = \frac{1}{2} x^{T} P x + q^{T} x + r\), with \(P \succeq 0\) is convex
  • least squares: \(f\qty(x) = \norm{Ax - b}^{2}_{2}\) is convex for any \(A\)
  • inverse product: \(f\qty(x) = \frac{1}{\prod_{i=1}^{n} x_{i}}\)
  • inv_pos on \(R_{++}\): \(f\qty(x) = \frac{1}{x}\) is convex if \(x\) is concave and positive

some concave fuctions

  • affine
  • square root
  • fractional powers
  • min
  • logs: \(\log x\)
  • entropy: \(- x \log x\)
  • negative part (opposite relu)
  • log determinant: \(f\qty(X) = \log \text{det} X\)
  • geometric mean: \(f\qty(x) = \qty(\prod_{k=1}^{n} x_{k})^{\frac{1}{n}}\) an \(\mathbb{R}_{++}^{n}\)

sublevel set

\begin{equation} C_{\alpha} = \qty {x \in \text{dom f} \mid f\qty(x) \leq \alpha } \end{equation}

convex set

Last edited: February 2, 2026

constituents

  • set \(C\)
  • \(\theta \in \mathbb{R}\)

requirements

A set \(C\) is a convex set if:

\begin{equation} x_1, x_2 \in C, 0 \leq \theta \leq 1 \implies \theta x_{1} + \qty(1-\theta) x_{2} \in C \end{equation}

definitions

standard definitions

additional information

operations that preserve convexity

Convex sets is a calculus! Methods to showing complexity:

Anything in Euclidian Geometry Crash Course

  1. apply definition: show \(x_1, x_2 \in C, 0 \leq \theta \leq 1 \implies \theta x_1 + \qty(1-\theta) x_2 \in C\)
  2. use convex functions
  3. show that \(C\) is obtained from convex sets via the following operations

intersection

Intersections of any number of convex sets, include infinite, are convex.

dual transformation

Last edited: February 2, 2026

introducing new variables

Consider the original problem:

\begin{align} \min_{x}\quad & \norm{Ax - b} \end{align}

Now, we can reformulate and write \(y = Ax - b\). Now, remember the conjugate of the norm is:

\begin{equation} \norm{z} = \begin{cases} 0, \norm{z} \leq 1\\ \infty \end{cases} \end{equation}

And remember the dual is some massaging of the conjugate. And thus we can formulate a “norm conjugate”:

\begin{align} \max_{v}\quad & b^{T}v \\ \textrm{s.t.} \quad & A^{T}v = 0 \\ & \norm{v} \leq 1 \end{align}