_index.org

advantage function

Last edited: August 8, 2025

an advantage function is a method for scoring a policy based on how much additional value it provides compared to the greedy policy:

\begin{align} A(s,a) &= Q(s,a) - U(s) \\ &= Q(s,a) - \max_{a}Q(s,a) \end{align}

that is, how much does your policy’s action-value function differ from that of choosing the action that maximizes the utility.

For a greedy policy that just optimizes this exact metric, \(A =0\).

advertising

Last edited: August 8, 2025

affine subset

Last edited: August 8, 2025

an affine subset of \(V\) is a subset of \(V\) that is the sum of a vector and one of its subspace; that is, an affine subset of \(V\) is a subset of \(V\) of the form \(v+U\) for \(v \in V\) and subspace \(U \subset V\).

for \(v \in V\) and \(U \subset V\), an affine subset \(v+U\) is said to be parallel to \(U\).

that is, an affine subset for \(U \subset V\) and \(v \in V\):

affine transformation

Last edited: August 8, 2025

In math, an affine transformation is a transformation that preserves lines and parallelism.

For instance, here is an affine transformation:

\begin{equation} U’(S) = mU(s) + b \end{equation}

where \(m > 0\), and \(b\) is unconstrained.

https://en.wikipedia.org/wiki/Affine_transformation

agent

Last edited: August 8, 2025

An agent is an entity that act upon the observations of its environment.