knowledgebase testing page
Last edited: February 2, 2026Like a sound you hear That lingers in your ear But you can’t forget From sundown to sunset
It’s all in the air You hear it everywhere No matter what you do It’s gonna grab a hold on you California soul
\begin{equation} x_1^{(j)} = x_1^{(j-1)} + Attn\qty(x_{k}^{(j-1)}, \forall k) \end{equation}
\begin{equation} At_{x_{1}^{(j-1)}} = \text{softmax}\qty(\frac{q_{1} k_{j}, \forall j}{\sqrt{d_{\ \text{model}}}}) v_{j} \end{equation}
\begin{equation} At_{x_{1}^{(j-1)}} = \text{softmax}_{\text{top-k cliff}}\qty(\frac{q_{1} k_{j}, \forall j}{\sqrt{d_{\ \text{model}}}}) v_{j} \end{equation}
quasiconvex function
Last edited: February 2, 2026a quasiconvex function \(f: \mathbb{R}^{n} \to \mathbb{R}\) is quasiconvex if \(\text{dom } f\) is a convex set and the sublevel sets:
\begin{equation} S_{\alpha} = \qty {x \in \text{dom } f \mid f\qty(x) \leq \alpha } \end{equation}
are convex for all \(\alpha\). These functions are also called unimodal functions.
properties of quasiconvex functions
modified Jensen’s Inequality
\begin{equation} 0 \leq \theta \leq 1 \implies f\qty(\theta x + \qty(1-\theta)y) \leq\max\qty{f\qty(y), f\qty(x)} \end{equation}
l
first-order condition
differential \(f\) with convex domain is quasiconvex IFF
quasiconvex optimization
Last edited: February 2, 2026\begin{align} \min_{x}\quad & f_{0}\qty(x) \\ \textrm{s.t.} \quad & f_{i}\qty(x) \leq 0, i = 1 \dots m\\ &Ax = b \end{align}
Where \(f_{0}\) is quasiconvex, and \(f_{i\geq 1}\) is convex.
solution methods
convex representation of sublevel sets
if \(f_{0}\) is quasiconvex, then there exists a family of functions \(\phi_{t}\) for which:
\begin{equation} f_{0} \leq t \iff \phi_{t}\qty(x) \leq 0 \end{equation}
where \(\phi_{t}\) is convex for fixed \(t\).
bisection method for quasiconvex optimization
We can cast all quasiconvex problems into a binary search over \(t\). Solve the following convex feasibility problem:
SU-EE364A FEB032026
Last edited: February 2, 2026Key Sequence
Notation
New Concepts
- Strong and Weak Duality
- Geometric Interperattion of the Dual
- preturbation analysis
- dual transformation
- theorem of alternatives
